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Abstract. Using the helicity formulism, we calculate the combined angular distribution function of the po-
larized gamma photons and electron in the cascade process p̄p→ ψ′→ χJ +γ1→ ψ+γ2+γ1→ e

++ e−+
γ2+γ1 (J = 0, 1, 2), when p̄ and p are unpolarized. We also present the partially integrated angular distri-
bution functions in different cases. Our results show that by measuring the two-particle angular distribution
of γ1 and γ2 and that of γ2 and e

− with the polarization of either one of the two particles, one can deter-
mine the relative magnitudes as well as the relative phases of the helicity amplitudes in the radiative decay
processes ψ′→ χJ +γ1 and χJ → ψ+γ2.

PACS. 11.80.Cr; 13.20.Fc; 13.60.Le; 14.40.Gx

1 Introduction

Model-independent studies of the angular distribution in
the decays of charmonium states directly produced in p̄p
collisions can give us valuable information on the true dy-
namics of the charmonium system. The helicity formulism,
first introduced by Jacob and Wick in 1959 [1], allows
us to separate the consequences of the quantum mechan-
ics and symmetry from those of the detailed dynamics in
the angular distribution. The angular-momentum helic-
ity amplitudes can be defined [1, 2] in such a way that
all the dynamics is contained in them. The expression
for the angular distribution is given in terms of these he-
licity amplitudes and the Wigner DJ functions. So, in
principle, the experimental determination of the angu-
lar distribution of the final decay products of the char-
monium allows us to obtain important information on
the relative magnitudes as well as the relative phases of
these helicity amplitudes. In order to obtain the over-
all absolute magnitudes one also has to measure the
branching ratios of the decays as well as the total decay-
width or the lifetime of the charmonium states. All of
these measurements for the ψ′ charmonium state will
be prospectively obtained from the E835 experiment at
the Fermilab [3] and the planned PANDA experiment at
FAIR [4], which study charmonium spectroscopy in p̄p
annihilation.
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In a previous paper [5], it is shown that by measur-
ing the combined angular distribution of the two pho-
tons and of the electron, regardless of their polarizations,
in the sequential process originating from unpolarized p̄p
collisions, namely, p̄p→ ψ′ → χJ + γ1 → (ψ+ γ2)+ γ1→
(e+e−)+γ1+γ2 (J = 0, 1, 2), one can extract the relative
magnitudes as well as the cosines of the relative phases of
all the angular-momentum helicity amplitudes in the ra-
diative decay processesψ′→ χJ+γ1 and χJ → ψ+γ2. The
sines of the relative phases are not determined uniquely.
By including the measurement of the polarization of one
of the decay particles, one may be able to also obtain un-
ambiguously the sines of these relative phases and thus
complete information on all the angular-momentum helic-
ity amplitudes in the radiative decay processes. So in this
paper we calculate the angular distributions of the final
stable decay products, γ1, γ2 and e

−, with the determin-
ation of the polarization of any one of the three particles
in the above cascade process when p̄ and p are unpolarized.
Our final expressions for the angular distribution functions
are valid in the p̄p center-of-mass frame and they are writ-
ten as sums of terms involving products of the Wigner
DJ functions whose arguments are the angles representing
the directions of the final electron and of the two pho-
tons. The coefficients in these expansions are functions of
the angular-momentum helicity amplitudes in the differ-
ent individual processes of the above cascade process. Once
the combined angular distribution of γ1, γ2 and e

− and
the polarization of any one of the particles in unpolarized
p̄p collisions are experimentally measured, our expressions
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will enable one to calculate the relative magnitudes as well
as the relative phases of all the angular-momentum helicity
amplitudes in the two radiative decay processes mentioned
above for all values of J . Therefore one can get complete
information on these helicity amplitudes. In addition, one
can also determine the relative magnitudes of the angular-
momentum helicity amplitudes in the processes p̄p→ ψ′

and ψ→ e+e−. Our results on the partially integrated an-
gular distributions where the combined angular distribu-
tion function of γ1, γ2 and e

− is integrated over the di-
rections of one or two particles are quite interesting. They
show that by measuring the two-particle angular distribu-
tion of γ1 and γ2 as well as that of γ2 and e

− with the
polarization of either one of the two particles, one can get
as much information on the helicity amplitudes as one ob-
tained from measuring the combined angular distribution
of γ1, γ2 and e

− with the polarization of any one particle.
The format of the rest of the paper is as follows. In

Sect. 2, we give the calculation for the combined angu-
lar distribution with polarization determination of the
electron and of the two photons in the cascade pro-
cess p̄p→ ψ′ → χJ + γ1→ (ψ+ γ2)+ γ1→ (e+e−)+ γ1+
γ2 (J = 0, 1, 2), when p̄ and p are unpolarized. We then
show how the measurement of this combined angular dis-
tribution of polarized γ1, γ2 and e

− enables us to obtain
complete information on the helicity amplitudes in the two
radiative decay processes ψ′→ χJ +γ1 and χJ → ψ+γ2.
We also present three different results for the combined an-
gular distribution, in which the polarization of only one of
the three particles, γ1, γ2 and e

−, is measured. In Sect. 3,
we present the results for the partially integrated angular
distributions in different cases where the combined angu-
lar distribution function of the three particles is integrated
over the directions of one or two particles. These results
can all be expressed in terms of the orthogonal spherical
harmonic functions. We point out how the measurement of
these partially integrated angular distributions will again
give us complete information on all the helicity amplitudes
in the two radiative decay processes. Finally, in Sect. 4, we
make some concluding remarks.

2 Calculations for the combined angular
distribution of polarized γ1, γ2 and e�

We consider the cascade process, ¯p(λ1)+p(λ2)→ ψ′(δ)→
χJ (ν) + γ1(µ) → ψ(σ) + γ2(κ) + γ1(µ) → e−(α1) +
e+(α2)+ γ2(κ)+ γ1(µ) (J = 0, 1, 2), in the p̄p center-of-
mass frame or the ψ′ rest frame, where J is the angular
momentum of the χ resonance and the Greek symbols after
the particle symbols represent their helicities except for the
stationary ψ′ resonance, in which case the symbol δ rep-
resents the z component of the angular momentum. We
choose the z axis to be in the direction of motion of χJ in
the ψ′ rest frame. The x and y axes are arbitrary in our dis-
cussions. The experimentalists can choose them according
to his or her convenience. The probability amplitude for
the above cascade process can be written as a product of
the matrix elements for the individual sequential processes.

Since only the helicities of the initial and the final particles,
namely, λ1, λ2, µ, κ, α1 and α2, are observed, we write the
probability amplitude for the cascade process in the ψ′ rest
frame as

Tα1α2µκλ1λ2
=

−1,0,+1∑

δ,σ

−J→+J∑

ν

ψ′〈ψ
′(δ)|B|p̄(λ1), p(λ2)〉ψ′

×ψ′〈χJ (ν), γ1(µ)|A|ψ
′(δ)〉ψ′

×ψ′〈ψ(σ), γ2(κ)|E|χJ(ν)〉ψ′

×ψ′〈e
−(α1), e

+(α2)|C|ψ(σ)〉ψ′ . (1)

We sum over the helicities and the spin indices of the unob-
served intermediate particles in (1). The symbols B, A, E
and C represent the appropriate transition operators. The
subscript ψ′ attached to the bra or the ket vector indicates
that each individual matrix element is evaluated in the ψ′

rest frame. In the first two matrix elements the ψ′ rest
frame is the same as the c.m. frame of the two particles. In
the last two matrix elements 〈ψγ2|E|χJ 〉 and 〈e−e+|C|ψ〉
this is not the case. To avoid confusion, we should clar-
ify what we mean by the two-particle helicity states when
they are not in their c.m. frame. For example, the two-
particle state |ψ(σ), γ2(κ)〉ψ′ defined in the ψ

′ rest frame,
which is not the c.m. frame of ψ and γ2, has the follow-
ing meaning. First construct the two-particle helicity state
|ψ(σ), γ2(κ)〉χJ in the χJ rest frame (which is the same as
the c.m. frame of ψ and γ2) according to the usual conven-
tions [2] with ψ and γ2 having equal and opposite momenta
and helicities σ and κ, respectively. Then

|ψ(σ), γ2(κ)〉ψ′ = UΛ(ψ
′, χJ)|ψ(σ), γ2(κ)〉χJ , (2)

where UΛ(A,B) is the unitary operator corresponding to
the Lorentz transformation Λ(A,B) which takes the sys-
tem from the Lorentz frame where B is at rest to the
Lorentz frame where A is at rest. It is important to clarify
this point since in general ψ and γ2 do not have definite he-
licities in the ψ′ rest frame. A similar meaning also holds
for the two-particle state |e−(α1), e+(α2)〉ψ′ .
Let us now consider the matrix elements in (1) one by

one. First,

ψ′〈ψ
′(δ)|B|p̄(λ1), p(λ2)〉ψ′ = 〈1δ|B|p(θ, φ);λ1λ2〉 , (3)

where 〈1δ| is the one-particle helicity state, or the angular-
momentum state, of ψ′ in its own rest frame and p(θ, φ)
is the magnitude of the c.m. momentum of p̄, which is
taken to be in the direction (θ, φ) in the coordinate sys-
tem we have chosen. Using the usual expansion [2] of the
two-particle helicity state in the c.m. frame in terms of the
angular-momentum states we find [6]

ψ′〈ψ
′(δ)|B|p̄(λ1), p(λ2)〉ψ′ =

√
3

4π
Bλ1λ2D

1
δλ(φ, θ,−φ) ,

(4)

where

λ= λ1−λ2 . (5)
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andBλ1λ2 are the angular-momentum helicity amplitudes.
Similarly, the matrix element for the process ψ′→ χJ +

γ1 with χJ and γ1 moving along the +z and −z directions,
respectively, can be written as

ψ′〈χJ (ν), γ1(µ)|A|ψ
′(δ)〉ψ′ = 〈pχJ (0, 0); νµ|A|1δ〉

=

√
3

4π
AJνµD

1∗
δ,ν−µ(0, 0, 0)

=

√
3

4π
AJνµδδ,ν−µ , (6)

where pχJ (0, 0) is the magnitude of the momentum of χJ
along the z axis in the ψ′ rest frame and the AJνµ are the
angular-momentum helicity amplitudes for this process.
Next we notice that the matrix elements for the process

χJ → ψ+γ2 in the ψ′ and the χJ rest frames are equal.
That is,

ψ′〈ψ(σ), γ2(κ)|E|χJ (ν)〉ψ′

= χJ 〈ψ(σ), γ2(κ)|U
†
Λ(ψ

′, χJ)EUΛ(ψ
′, χJ)|χJ (ν)〉χJ

= χJ 〈ψ(σ), γ2(κ)|E|χJ(ν)〉χJ . (7)

In (7) we have used the fact that the transition operator E
is invariant under Lorentz transformations:

U†ΛEUΛ =E . (8)

Using (7) we can now write

ψ′〈ψ(σ), γ2(κ)|E|χJ (ν)〉ψ′ = χJ 〈p
′(θ′, φ′);σκ|E|Jν〉χJ ,

(9)

where p′(θ′, φ′) is the magnitude of the ψ three-momentum
in the χJ rest frame or the ψ–γ2 c.m. frame. Moreover, in
this frame, the index ν is the z-component of the total an-
gular momentum of χJ . Again using the expansion of the
two-particle helicity state in the c.m. frame in terms of the
angular-momentum states we obtain

ψ′〈ψ(σ), γ2(κ)|E|χJ(ν)〉ψ′ =√
2J+1

4π
EJσκD

J∗
ν,σ−κ(φ

′, θ′,−φ′) , (10)

where EJσκ are the angular-momentum helicity amplitudes
for the process.
For the matrix element of the final process ψ(σ)→

e−(α1)+ e
+(α2) the situation is more involved. We have

ψ′〈e
−(α1), e

+(α2)|C|ψ(σ)〉ψ′

= ψ〈e
−(α1), e

+(α2)|U
†
Λ(ψ

′, ψ)CUΛ(ψ
′, χJ)

×UΛ(χJ , ψ)|ψ(σ)〉ψ

= ψ〈e
−(α1), e

+(α2)|U
†
Λ(ψ

′, ψ)CUΛ(ψ
′, ψ)U†Λ(ψ

′, ψ)

×UΛ(ψ
′, χJ)UΛ(χJ , ψ)|ψ(σ)〉ψ

= ψ〈e
−(α1), e

+(α2)|CU
†
Λ(ψ

′, ψ)

×UΛ(ψ
′, χJ)UΛ(χJ , ψ)|ψ(σ)〉ψ . (11)

In the first equality of (11) we have made use of the fact
that the single-particle state |ψ(σ)〉ψ′ was also part of the

two-particle helicity state in (10). It was obtained by suc-
cessively performing two unitary operations corresponding
to two Lorentz transformations, the first taking the ψ state
from its rest frame to the χJ rest frame and the second tak-
ing it from the χJ rest frame to the ψ

′ rest frame. In the last
equality of (11) we now make use of the fact that

UΛ(ψ
′, χJ)UΛ(χJ , ψ) = UΛ(ψ

′, ψ)URW , (12)

where URW is a unitary operator corresponding to a pure
rotation, usually called “Wigner rotation”. Using (12) and
the unitarity of UΛ, (11) now leads to

ψ′〈e
−(α1), e

+(α2)|C|ψ(σ)〉ψ′

= ψ〈e
−(α1), e

+(α2)|CURW |ψ(σ)〉ψ

= ψ〈e
−(α1), e

+(α2)|URWU
†
RW
CURW |ψ(σ)〉ψ

= ψ〈e
−(α1), e

+(α2)|URWC|ψ(σ)〉ψ , (13)

since

U†RWCURW = C . (14)

Using the expansion of the two-particle helicity state in
terms of the angular-momentum states, we can write the
right-hand side of (13) as

ψ〈e
−(α1), e

+(α2)|URWC|ψ(σ)〉ψ

=

√
3

4π
D1∗δα
(
R−1W êψ

)
Cα1α2

=

√
3

4π
Cα1α2D

1∗
δα(φ

′′, θ′′,−φ′′) , (15)

where

α= α1−α2 , (16)

êψ is a unit vector in the direction of e
− three-momentum

in the ψ rest frame, RW is the (3×3) rotation matrix and
Cα1α2 are the angular-momentum helicity amplitudes for
the process. We should mention here that if the electron–
positron pair is created by a virtual photon via q̄q→ γ→
e+e−, the helicity zero amplitude C++ or C−− is of the
order m/E when compared to the helicity 1 amplitude
C+− or C−+. Since E ∼=Mψ/2 where Mψ is the rest mass
of ψ, m/E ∼= 3.3×10−4 and the helicity zero amplitude is
relatively negligible.
TheWigner-rotated unit vectorR−1W êψ can be obtained

in the following way. If R represents the (4× 4) matrix
whose spatial part gives the (3×3) matrix RW mentioned
above, then, from the definition of URW in (12),

R= Λ−1(ψ′, ψ)Λ(ψ′, χJ)Λ(χJ , ψ) , (17)

where the Λ are the (4×4) Lorentz transformation matri-
ces. Now we note that the electron is highly relativistic in
the ψ rest frame and its four-momentum vector peψ can be
represented to a very good approximation by

peψ =
Mψ

2
(1, êψ) , (18)
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and therefore

R−1peψ = Λ
−1(χJ , ψ)Λ

−1(ψ′, χJ )Λ(ψ
′, ψ)peψ

= Λ−1(χJ , ψ)Λ
−1(ψ′, χJ )Λ(ψ

′, ψ)Λ−1(ψ′, ψ)peψ′

= Λ−1(χJ , ψ)Λ
−1(ψ′, χJ )peψ′ . (19)

In (19) the four-momentum of e− in the ψ′ rest frame is
given by

peψ′ =Eeψ′ (1, êψ′) , (20)

where Eeψ′ is the relativistic energy of e
−, and êψ′ is the

unit vector in the direction of the three-momentum of e− in
the ψ′ rest frame. From (18) we also have

R−1peψ =
Mψ

2

(
1, R−1W êψ

)
. (21)

Combining (19)–(21) we get

Mψ

2

(
1, R−1W êψ

)
= Λ−1(χJ , ψ)Λ

−1(ψ′, χJ)Eeψ′ (1, êψ′) .

(22)

The spatial part of the right-hand side of (22) gives, within
a normalization factor, the Wigner-rotated unit vector ˆ̃e=
(R−1W êψ) in terms of the angles (θ̃

′′, φ̃′′) which give the di-
rection of e− in the ψ′ rest frame.
We emphasize that the angles (θ′, φ′) of ψ and (θ′′, φ′′)

of e− are directions in the χJ and the ψ rest frames, re-
spectively. They are not the same as the corresponding
angles measured in the ψ′ rest frame or the lab frame. How-
ever, the different reference frames are related to each other
through the Lorentz transformation. If (θ̃′, φ̃′) represent
the directions of ψ in the ψ′ rest frame, they are related to
the angles (θ′, φ′) by the following relations:

φ′ = φ̃′ , (23)

cos θ′ =
1(

1−β22 cos
2 θ̃′
)
{
(cos2 θ̃′−1)

β2

β1
+cos θ̃′

√
1−β22

×

√

1−

(
β2

β1

)2
+cos2 θ̃′

[(
β2

β1

)2
−β22

]}
. (24)

Since 0≤ θ′ ≤ π, sin θ′ has to be positive and so it will be
given by the positive square root:

sin θ′ =
√
1− cos2 θ′ . (25)

In (24) β1 is the parameter v/c of ψ in the χJ rest frame
and β2 is v/c of χJ in the ψ

′ rest frame:

β1 =
M2χJ −M

2
ψ

M2χJ +M
2
ψ

, (26)

β2 =
M2ψ′ −M

2
χJ

M2
ψ′
+M2χJ

, (27)

whereMψ′ is the mass of the ψ
′ state. The angles (θ′′, φ′′)

giving the directions of the electron in the ψ frame are

related to the angles (θ̃′′, φ̃′′) giving the directions of the
electron in the ψ′ frame by the relations:

cosφ′′ =
1

η′
[γ2β2 sin θ

′+cos θ′ cosφ′ sin θ̃′′ cos φ̃′′

+cos θ′ sinφ′ sin θ̃′′ sin φ̃′′−γ2 sin θ
′ cos θ̃′′] ,

(28)

sinφ′′ =
1

η′
[cosφ′ sin θ̃′′ sin φ̃′′− sinφ′ sin θ̃′′ cos φ̃′′] ,

(29)

cos θ′′ =
1

η

[
−γ1γ2(β1+β2 cos θ

′)

+γ1(sin θ
′ cosφ′ sin θ̃′′ cos φ̃′′

+sin θ′ sinφ′ sin θ̃′′ sin φ̃′′)

+γ1γ2(β1β2+cos θ
′) cos θ̃′′

]
, (30)

sin θ′′ =+
√
1− cos2 θ′′ =

η′

η
, (31)

where

η′ =
[
(γ2β2 sin θ

′+cos θ′ cosφ′ sin θ̃′′ cos φ̃′′

+cos θ′ sinφ′ sin θ̃′′ sin φ̃′′−γ2 sin θ
′ cos θ̃′′)2

+(cosφ′ sin θ̃′′ sin φ̃′′− sinφ′ sin θ̃′′ cos φ̃′′)2
]1/2
,

(32)

η =
[
γ1γ2(1+β1β2 cos θ

′)−γ1β1(sin θ
′ cosφ′ sin θ̃′′ cos φ̃′′

+sin θ′ sinφ′ sin θ̃′′ sin φ̃′′)

−γ1γ2(β2+β1 cos θ
′) cos θ̃′′

]
. (33)

The constants γi (i= 1, 2) are related to βi (i= 1, 2) by

γi =
1√
1−β2i

. (34)

From (26) and (27)

γ1 =
M2χJ +M

2
ψ

2MχJMψ
, (35)

γ2 =
M2ψ′ +M

2
χJ

2Mψ′MχJ
. (36)

Even though the above relations between the angles may
look formidable, once the angular distribution is known
in terms of the laboratory angles, they can easily be ex-
pressed in terms of the angles (θ, φ), (θ′, φ′) and (θ′′, φ′′)
through a computer program generated with the help of
these equations. This kind of transformation is routinely
done by experimentalists.
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Using (4), (6), (10) and (15) we can now write the am-
plitude in (1) as

T
α1α2µκ
λ1λ2

=
3
√
3(2J+1)

(4π)2

−1,0,+1∑

δ,σ

−J→+J∑

ν

Cα1α2E
J
σκA

J
νµ

×Bλ1λ2D
1∗
σα(φ

′′, θ′′,−φ′′)

×DJ∗ν,σ−κ(φ
′, θ′,−φ′)δδ,ν−µD

1
δλ(φ, θ,−φ)

=
3
√
3(2J+1)

(4π)2

−1,0,+1∑

δ,σ

Cα1α2E
J
σκA

J
µ+δ,µBλ1λ2

×D1∗σα(φ
′′, θ′′,−φ′′)

×DJ∗µ+δ,σ−κ(φ
′, θ′,−φ′)D1δλ(φ, θ,−φ) . (37)

Because of the C and the P invariances [2], the angular-
momentum helicity amplitudes in (37) are not all indepen-
dent. We have

Bλ1λ2
P
=B−λ1,−λ2

C
=Bλ2λ1 ,

AJνµ
P
= (−1)JAJ−ν,−µ,

EJσκ
P
= (−1)JEJ−σ,−κ ,

and

Cα1α2
P
= C−α1,−α2

C
= Cα2α1 . (38)

Making use of the symmetry relations of (38) we now re-
label the independent angular-momentum helicity ampli-
tudes as follows:

Bλ =B(λ1−λ2) =
√
2Bλ1λ2 (λ= 0, 1) ,

Aν =A
J
ν,1 = (−1)

JAJ−ν,−1 (ν = 0, 1, . . . ,+J) ,

Eσ =E
J
σ−1,−1 = (−1)

JEJ−σ+1,1 (σ = 0, 1, . . . ,+J) ,

Cα = C(α1−α2) =
√
2Cα1α2 (α = 0, 1) . (39)

When p̄ and p are unpolarized, the normalized function de-
scribing the combined angular distribution of the electron
and the two photons whose polarizations are also observed
can be written as

Wµκα1(θ, φ; θ
′, φ′; θ′′, φ′′) =NJ

± 12∑

λ1,λ2

± 12∑

α2

T
α1α2µκ
λ1λ2

T
α1α2µκ∗
λ1λ2

,

(40)

where the subscripts µκα1 of W represent the polar-
izations that are measured in the angular distribution.
The normalization constant, NJ , in (40) is determined
by requiring that the integral of the distribution func-
tion Wµκα1(θ, φ; θ

′, φ′; θ′′, φ′′) over all the directions of γ1,
γ2 and e

− or over all the angles, (θ, φ; θ′, φ′; θ′′, φ′′), is 1.
In (40) we sum over the helicities α2 since e

+ is not ob-
served. Substituting (37) into (40) and performing the
various sums will then give us an expression for the angular
distribution function Wµκα1(θ, φ; θ

′, φ′; θ′′, φ′′) in terms of

the WignerDJ functions. After a very long algebra, we get

Wµκα1(θ, φ; θ
′, φ′; θ′′, φ′′)

=
32(2J+1)

4(4π)3

0,1,2∑

L1

0,2∑

L3

εL1αL3

×
0→2J∑

L2

(−1)
1
2 (1+µ)L2(−1)

1
2 (1−κ)(L1+L2)

×
0→dm∑

d

0→d′m∑

d′

{
β
L3L2
d+

[
γ
L1L2
d′+ (D1+D

∗
1+D2+D

∗
2)

+γL1L2d′− (D1−D
∗
1+D2−D

∗
2)
]

+βL3L2d−

[
γ
L1L2
d′+ (D1−D

∗
1−D2+D

∗
2)

+γL1L2
d′− (D1+D

∗
1−D2−D

∗
2)
]}
, (41)

where

dm =min(L3, L2, J) ,

d′m =min(L1, L2, J) , (42)

and we have used the following normalizations for the
angular-momentum helicity amplitudes Bλ, Aν , Eσ and
Cα defined in (39):

|B0|
2+ |B1|

2 = |C0|
2+ |C1|

2 =
0→J∑

ν

|Aν |
2 =

0→J∑

σ

|Eσ |
2 = 1 .

(43)

In (41) the angle-dependent terms are given by

D1 =D
L3∗
−µd,0(φ, θ,−φ)D

L1
κd′,0(φ

′′, θ′′,−φ′′)

×DL2−µd,κd′(φ
′, θ′,−φ′) (44)

and

D2 =D
L3∗
µd,0(φ, θ,−φ)D

L1
κd′,0(φ

′′, θ′′,−φ′′)

×DL2
µd,κd′

(φ′, θ′,−φ′) . (45)

The coefficients εL1 , αL3 , β
L3L2
d± and γL1L2

d′± , which are in-

dependent of the angles in (41), are defined as follows:

εL1 = (−1)
(α1−

1
2 )L1
⌊
〈11; 00 | L10〉|C0|

2

−〈11;−11 | L10〉|C1|
2
⌋
, (46)

αL3 =

0,1∑

λ

(−1)λ〈11;λ−λ | L30〉|Bλ|
2 , (47)

β
L3L2
d± =

(
1−
δd0

2

)∑

s(d)

[
A s+d

2
A∗s−d

2
±A∗s+d

2
A s−d

2
]

×

〈
JJ ;
s+d

2
,−
s−d

2

∣∣∣∣L2d
〉

×

〈
11;
s+d−2

2
,−
s−d−2

2

∣∣∣∣L3d
〉
, (48)

s(d) = |d|, |d|+2, . . . , 2J−|d| ,

γ
L1L2
d′± = βL1L2

d′± (A→ E , s(d)→ s′(d′)) . (49)
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The explicit expressions for the nonzero coefficients γL1L2
d′±

as well as εL1 and αL3 are given in the following; we have

α0 =−
1
√
3

[
|B0|

2+ |B1|
2
]
=−

1
√
3
,

α2 =
1
√
6

[
2|B0|

2−|B1|
2
]
, (50)

ε0 =−
1
√
3

[
|C0|

2+ |C1|
2
]
=−

1
√
3
,

ε1 =
1
√
2
(−1)(α1−

1
2)|C1|

2 ∼=
1
√
2
(−1)(α1−

1
2 ) ,

ε2 =
1
√
6

[
2|C0|

2−|C1|
2
]
∼=−

1
√
6
. (51)

J = 0:

γ000+ =
1
√
3
,

γ100+ =−
1
√
2
,

γ200+ =
1
√
6
. (52)

J = 1:

γ000+ =−
1

3
,

γ010+ =−
1
√
6
|E1|

2 ,

γ020+ =
1

3
√
2

(
2|E0|

2−|E1|
2
)
,

γ100+ =
1
√
6
|E0|

2 ,

γ111+ =−Re(E1E
∗
0 ) ,

γ120+ =−
1
√
3
|E0|

2 ,

γ121+ =−Re(E1E
∗
0 ) ,

γ200+ =−
1

3
√
2

(
|E0|

2−2|E1|
2
)
,

γ210+ =
1
√
3
|E1|

2 ,

γ211+ =Re(E1E
∗
0 ) ,

γ220+ =
1

3
,

γ221+ =Re(E1E
∗
0 ) ,

γ111− =−i Im(E1E
∗
0 ) ,

γ121− =−i Im(E1E
∗
0 ) ,

γ211− = i Im(E1E
∗
0 ) ,

γ221− = i Im(E1E
∗
0 ) . (53)

J = 2:

γ000+ =
1
√
15
,

γ010+ =
1
√
30

(
|E1|

2+2|E2|
2
)
,

γ020+ =−
1
√
42

(
2|E0|

2+ |E1|
2−2|E2|

2
)
,

γ030+ =−
1
√
30

(
2|E1|

2−|E2|
2
)
,

γ040+ =
1
√
210

(
6|E0|

2−4|E1|
2+ |E2|

2
)
,

γ100+ =−
1
√
10

(
|E0|

2−|E2|
2
)
,

γ110+ =
1
√
5
|E2|

2 ,

γ111+ =
1
√
5

[√
3Re(E1E

∗
0 )+
√
2Re(E2E

∗
1 )
]
,

γ120+ =
1
√
7

(
|E0|

2+ |E2|
2
)
,

γ121+ =
1
√
7

[
Re(E1E

∗
0 )+
√
6Re(E2E

∗
1 )
]
,

γ130+ =
1

2
√
5
|E2|

2 ,

γ131+ =−
1
√
5

[√
2Re(E1E

∗
0 )−
√
3Re(E2E

∗
1 )
]
,

γ140+ =−
1

2
√
35

(
6|E0|

2−|E2|
2
)
,

γ141+ =−
1
√
7

[√
6Re(E1E

∗
0 )−Re(E2E

∗
1 )
]
,

γ200+ =
1
√
30

(
|E0|

2−2|E1|
2+ |E2|

2
)
,

γ210+ =−
1
√
15

(
|E1|

2−|E2|
2
)
,

γ211+ =−
1
√
5

[√
3Re(E1E

∗
0 )−
√
2Re(E2E

∗
1 )
]
,

γ220+ =−
1
√
21

(
|E0|

2−|E1|
2−|E2|

2
)
,

γ221+ =−
1
√
7
[Re(E1E

∗
0 )−
√
6Re(E2E

∗
1 )] ,

γ222+ =

√
8

7
Re(E2E

∗
0 ) ,

γ230+ =
1

2
√
15

(
4|E1|

2+ |E2|
2
)
,

γ231+ =
1
√
5

[√
2Re(E1E

∗
0 )+
√
3Re(E2E

∗
1 )
]
,

γ232+ =
√
2Re(E2E

∗
0 ) ,

γ240+ =
1
√
420

(
6|E0|

2+8|E1|
2+ |E2|

2
)
,

γ241+ =
1
√
7

[√
6Re(E1E

∗
0 )+Re(E2E

∗
1 )
]
,

γ242+ =

√
6

7
Re(E2E

∗
0 ) ,

γ111− =
i
√
5

[√
3 Im(E1E

∗
0 )+
√
2 Im(E2E

∗
1 )
]
,

γ121− =
i
√
7

[
Im(E1E

∗
0 )+
√
6 Im(E2E

∗
1 )
]
,

γ131− =−
i
√
5

[√
2 Im(E1E

∗
0 )−
√
3 Im(E2E

∗
1 )
]
,
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γ141− =−
i
√
7

[√
6 Im(E1E

∗
0 )− Im(E2E

∗
1 )
]
,

γ211− =−
i
√
5

[√
3 Im(E1E

∗
0 )−
√
2 Im(E2E

∗
1 )
]
,

γ221− =−
i
√
7

[
Im(E1E

∗
0 )−
√
6 Im(E2E

∗
1 )
]
,

γ222− = i

√
8

7
Im(E2E

∗
0 ) ,

γ231− =
i
√
5

[√
2 Im(E1E

∗
0 )+
√
3 Im(E2E

∗
1 )
]
,

γ232− = i
√
2 Im(E2E

∗
0 ) ,

γ241− =
i
√
7

[√
6 Im(E1E

∗
0 )+ Im(E2E

∗
1 )
]
,

γ242− = i

√
6

7
Im(E2E

∗
0 ) . (54)

The expressions for βL3L2d± are identical to γL3L2d± , provided
that we replace the helicity amplitudes E by A. In calcu-
lating (50)–(54) we assumed the normalization conditions
in (43). Note that we have more γL1L2

d′± than βL3L2d± since L1
takes the values 0, 1 and 2 while L3 only takes 0 and 2.
Since the combined angular distribution in (41) is ex-

pressed as a sum of products of the orthogonal Wigner DJ

functions, we can obtain the coefficients of the DJ angular
functions as

32(2J +1)εL1αL3(−1)
1
2 (1+µ)L2(−1)

1
2 (1−κ)(L1+L2)

×
{
βL3L2d+

[
γL1L2
d′+ (1+ δd0)(1+ δd′0)

+γL1L2
d′− (1+ δd0)(1− δd′0)

]

+βL3L2d−

[
γ
L1L2
d′+ (1− δd0)(1+ δd′0)

+γL1L2
d′− (1− δd0)(1− δd′0)

]}

= 4(2L1+1)(2L2+1)(2L3+1)

×

∫
Wµκα1(θ, φ; θ

′, φ′; θ′′, φ′′)D∗1 dΩdΩ
′dΩ′′ .

(55)

In calculating (55), we made use of the orthogonality
relation,

∫ 2π

0

dα

∫ 2π

0

dγ

∫ π

0

Dj∗
mm′
(α, β, γ)Dj

′

µµ′
(α, β, γ) sinβdβ =

8π2

(2j+1)
δmµδm′µ′δjj′ . (56)

When we have sufficient experimental data for the angu-
lar distribution function Wµκα1 where the final polariza-
tions, µ, κ and α1, of all the three decay particles are
measured, the integral on the right side of (55) can then
be determined numerically for all possible allowed values
of L1, L2, L3, d and d

′. Thus we can obtain the differ-
ent coefficients εL1 , αL3 , β

L3L2
d± and γL1L2

d′± on the left side

of (55). From these coefficients we can determine the rela-
tive magnitudes as well as the relative phases of the A
and the E helicity amplitudes in the radiative decay pro-
cesses ψ′→ χJ +γ1 and χJ → ψ+γ2, respectively, for the

J = 1 and the J = 2 cases. For the J = 0 case, there is only
one independent helicity amplitude for each of the radia-
tive decay process and that is fixed by our normalization.
We can also obtain the relative magnitudes of the B he-
licity amplitudes in the initial process p̄p→ ψ′ and the
C helicity amplitude in the final decay process ψ→ e+e−

for all values of J . For example, in the J = 1 case, the
measurements of the (L1L2L3dd

′) coefficients will give us
the following. First the measurement of the (10000) and
the (12200) coefficients yields α2, which, with the nor-
malization |B0|2+ |B1|2 = 1, enables us to determine the
relative magnitudes of B0 and B1. Next measuring the
(00200) coefficient gives β200+, and with the normalization
|A0|2+ |A1|2 = 1, the relative magnitudes ofA0 andA1 are
also determined. Then measuring the (01000) coefficient
gives γ010+ and hence |E1|

2. With the normalization |E0|2+
|E1|2 = 1 we can determine the relative magnitudes of E0
and E1. The relative magnitudes of C0 and C1 can then
be obtained from the measurement of the (10000) coeffi-
cient and the normalization |C0|2+ |C1|2 = 1. After having
obtained all the relative magnitudes, now measuring the
(12001) coefficient gives both Re(E1E

∗
0 ) and Im(E1E

∗
0 ).

Thus the relative phase between E0 and E1 is determined.
Finally the measurement of the (02210) coefficient yields
both Re(A1A

∗
0) and Im(A1A

∗
0). Hence the relative phase

between A0 and A1 is also obtained.
It is interesting to note that using (41) we can easily

obtain different combined angular distribution functions
where the polarizations of only one or two of the decay
products γ1, γ2 and e

− are measured. Suppose we are in-
terested in only measuring the polarization µ of γ1, the
normalized combined angular distribution of γ1, γ2 and e

−

will then become

Wµ(θ, φ; θ
′, φ′; θ′′, φ′′)

=
1

4

± 12∑

α1

±1∑

κ

Wµκα1(θ, φ; θ
′, φ′; θ′′, φ′′)

=
32(2J+1)

8(4π)3

0,2∑

L1

0,2∑

L3

εL1αL3

×
0→2J∑

L2

(−1)
1
2 (1+µ)L2

0→dm∑

d

0→d′m∑

d′

{
β
L3L2
d+

×
[
γ
L1L2
d′+ (1+(−1)

L2)(D̃1+ D̃
∗
1+ D̃2+ D̃

∗
2)

+γL1L2
d′− (1− (−1)

L2)(D̃1− D̃
∗
1+ D̃2− D̃

∗
2)
]

+βL3L2d−

[
γL1L2
d′+ (1+(−1)

L2)(D̃1− D̃
∗
1− D̃2+ D̃

∗
2)

+γL1L2
d′− (1− (−1)

L2)(D̃1+ D̃
∗
1− D̃2− D̃

∗
2)
]}
, (57)

where

D̃1 =D1(κ= 1) =D
L3∗
−µd,0(φ, θ,−φ)D

L1
d′,0(φ

′′, θ′′,−φ′′)

×DL2−µd,d′(φ
′, θ′,−φ′) (58)
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and

D̃2 =D2(κ= 1) =D
L3∗
µd,0(φ, θ,−φ)D

L1
d′,0(φ

′′, θ′′,−φ′′)

×DL2
µd,d′
(φ′, θ′,−φ′) . (59)

The coefficients of the DJ angular functions in (57) can be
obtained from

32(2J+1)εL1αL3(−1)
1
2 (1+µ)L2

×
{
β
L3L2
d+

[
γ
L1L2
d′+ (1+(−1)

L2)(1+ δd0)(1+ δd′0)

+γL1L2
d′− (1− (−1)

L2)(1+ δd0)(1− δd′0)
]

+βL3L2d−

[
γL1L2
d′+ (1+(−1)

L2)(1− δd0)(1+ δd′0)

+γL1L2
d′− (1− (−1)

L2)(1− δd0)(1− δd′0)
]}

= 8(2L1+1)(2L2+1)(2L3+1)

×

∫
Wµ(θ, φ; θ

′, φ′; θ′′, φ′′)D̃∗1 dΩdΩ
′dΩ′′ , (60)

where L1 can only take the values 0 and 2.
Similarly, the normalized combined angular distribu-

tion of γ1, γ2 and e
− where only the polarization κ of γ2 is

measured can be written as

Wκ(θ, φ; θ
′, φ′; θ′′, φ′′)

=
1

4

± 12∑

α1

±1∑

µ

Wµκα1(θ, φ; θ
′, φ′; θ′′, φ′′)

=
32(2J+1)

8(4π)3

0,2∑

L1

0,2∑

L3

εL1αL3

×
0→2J∑

L2

(−1)
1
2 (1−κ)L2

0→dm∑

d

0→d′m∑

d′

{
βL3L2d+

×
[
γL1L2
d′+ ((−1)

L2+1)(D̂1+ D̂
∗
1+ D̂2+ D̂

∗
2)

+γL1L2
d′− ((−1)

L2+1)(D̂1− D̂
∗
1+ D̂2− D̂

∗
2)
]

+βL3L2d−

[
γ
L1L2
d′+ ((−1)

L2−1)(D̂1− D̂
∗
1− D̂2+ D̂

∗
2)

+γL1L2
d′− ((−1)

L2−1)(D̂1+ D̂
∗
1− D̂2− D̂

∗
2)
]}
, (61)

where

D̂1 =D1(µ= 1) =D
L3∗
−d,0(φ, θ,−φ)D

L1
κd′,0(φ

′′, θ′′,−φ′′)

×DL2−d,κd′(φ
′, θ′,−φ′) (62)

and

D̂2 =D2(µ= 1) =D
L3∗
d,0 (φ, θ,−φ)D

L1
κd′,0(φ

′′, θ′′,−φ′′)

×DL2
d,κd′
(φ′, θ′,−φ′) . (63)

The coefficients in (61) can be obtained as

32(2J+1)εL1αL3(−1)
1
2 (1−κ)L2

×
{
β
L3L2
d+

[
γ
L1L2
d′+ ((−1)

L2+1)(1+ δd0)(1+ δd′0)

+γL1L2
d′− ((−1)

L2 +1)(1+ δd0)(1− δd′0)
]

+βL3L2d−

[
γ
L1L2
d′+ ((−1)

L2 −1)(1− δd0)(1+ δd′0)

+γL1L2
d′− ((−1)

L2 −1)(1− δd0)(1− δd′0)
]}

= 8(2L1+1)(2L2+1)(2L3+1)

×

∫
Wκ(θ, φ; θ

′, φ′; θ′′, φ′′)D̂∗1 dΩdΩ
′dΩ′′ , (64)

where again L1 can only take the values 0 and 2.
If we are only interested in measuring the polarization

α1 of e
−, the combined angular distribution of γ1, γ2 and

e− will become

Wα1(θ, φ; θ
′, φ′; θ′′, φ′′)

=
1

4

±1∑

κ

±1∑

µ

Wµκα1(θ, φ; θ
′, φ′; θ′′, φ′′)

=
32(2J+1)

16(4π)3

0,1,2∑

L1

0,2∑

L3

εL1αL3

×
0→2J∑

L2

0→dm∑

d

0→d′m∑

d′

{
βL3L2d+ ((−1)L2+1)

×
[
γL1L2
d′+ (1+(−1)

L1)(D′1+D
′∗
1 +D

′
2+D

′∗
2 )

+γL1L2
d′− (1− (−1)

L1)(D′1−D
′∗
1 +D

′
2−D

′∗
2 )
]

+βL3L2d− ((−1)L2−1)

×
[
γ
L1L2
d′+ (1− (−1)

L1)(D′1−D
′∗
1 −D

′
2+D

′∗
2 )

+γL1L2
d′− (1+(−1)

L1)(D′1+D
′∗
1 −D

′
2−D

′∗
2 )
]}
,

(65)

where

D′1 =D1(µ= κ= 1) =D
L3∗
−d,0(φ, θ,−φ)D

L1
d′,0(φ

′′, θ′′,−φ′′)

×DL2−d,d′(φ
′, θ′,−φ′) (66)

and

D′2 =D2(µ= κ= 1) =D
L3∗
d,0 (φ, θ,−φ)D

L1
d′,0(φ

′′, θ′′,−φ′′)

×DL2
d,d′
(φ′, θ′,−φ′) . (67)

The coefficients in (65) can be obtained as

32(2J+1)εL1αL3
{
βL3L2d+ ((−1)L2+1)

×
[
γ
L1L2
d′+ (1+(−1)

L1)(1+ δd0)(1+ δd′0)

+γL1L2
d′− (1− (−1)

L1)(1+ δd0)(1− δd′0)
]

+βL3L2d− ((−1)L2 −1)

×
[
γL1L2
d′+ (1− (−1)

L1)(1− δd0)(1+ δd′0)

+γL1L2
d′− (1+(−1)

L1)(1− δd0)(1− δd′0)
]}

= 16(2L1+1)(2L2+1)(2L3+1)

×

∫
Wα1(θ, φ; θ

′, φ′; θ′′, φ′′)D′∗1 dΩdΩ
′dΩ′′ ,

(68)
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where this time L1 can take the values 0, 1 and 2. If we now
average over the polarizations α1 of e

− in (65) as well, we
get

1

2

± 12∑

α1

Wα1(θ, φ; θ
′, φ′; θ′′, φ′′)

=
1

8

±1∑

κ

±1∑

µ

± 12∑

α1

Wµκα1(θ, φ; θ
′, φ′; θ′′, φ′′)

=
32(2J+1)

8(4π)3

0,2∑

L1

0,2∑

L3

εL1αL3

×
0→2J∑

L2

0→dm∑

d

0→d′m∑

d′

{[
βL3L2d+ γL1L2

d′+ +βL3L2d− γL1L2
d′−

]

+(−1)L2
[
βL3L2d+ γL1L2

d′+ −βL3L2d− γL1L2
d′−

]}

×
[
(D′2+D

′∗
2 )+ (−1)

L2(D′1+D
′∗
1 )
]
. (69)

Using (48) and (49), the terms inside the braces of (69) can
be simplified as

[
β
L3L2
d+ γ

L1L2
d′+ +βL3L2d− γ

L1L2
d′−

]

+(−1)L2
[
βL3L2d+ γL1L2

d′+ −βL3L2d− γL1L2
d′−

]

= βL3L2d γL1L2
d′

, (70)

where

β
L3L2
d =

(
1−
δd0

2

)∑

s(d)

[
A s+d

2
A∗s−d

2
+(−1)L2A∗s+d

2
A s−d

2

]

×

〈
JJ ;
s+d

2
,−
s−d

2

∣∣∣∣L2d
〉

×

〈
11;
s+d−2

2
,−
s−d−2

2

∣∣∣∣L3d
〉
, (71)

s(d) = |d|, |d|+2, . . . , 2J−|d| ,

γ
L1L2
d′

= βL1L2
d′

(A→ E and s(d)→ s′(d′)) . (72)

By combining (69) and (70), we now recover the results
in [5], where the polarizations of the decay particles are not
measured.
Using (60), (64) or (68) it can be seen that once

the combined angular distribution Wµ(θ, φ; θ
′, φ′; θ′′, φ′′),

Wκ(θ, φ; θ
′, φ′; θ′′, φ′′) or Wα1(θ, φ; θ

′, φ′; θ′′, φ′′) is meas-
ured, one can also get the same information on the
helicity amplitudes as one obtained from measuring
Wµκα1(θ, φ; θ

′, φ′; θ′′, φ′′) where the polarizations of the
three particles γ1, γ2 and e

− are observed. In other words,
by measuring the combined angular distribution of the de-
cay particles γ1, γ2 and e

− and the polarization of any
one particle, we can get complete information on the helic-
ity amplitudes in the radiative decay processes ψ′→ χJ +
γ1 and χJ → ψ+ γ2. In addition, we can also get the
relative magnitudes of the helicity amplitudes in the pro-
duction process p̄p→ ψ′ and in the final decay process
ψ→ e+e−.

3 Partially integrated angular distributions

The partially integrated angular distributions obtained
from (41) will look a lot simpler and we shall gain greater
insight from them. We now consider six different cases
of partially integrated angular distributions. In deriving
these results, we shall frequently make use of (56) and the
following property of the DJ functions:

∫ 2π

0

dφ

∫ π

0

DL∗MM ′(φ, θ,−φ) sin θdθ

=

∫ 2π

0

dφ

∫ π

0

DLMM ′(φ, θ,−φ) sin θdθ

= 2πδM−M′,0

∫ π

0

dLMM ′(θ) sin θdθ = 2πkLM ,

(73)

where

kLM =

∫ π

0

dLMM (θ) sin θdθ . (74)

We will express the final results in terms of the orthogonal
spherical harmonics by making use of the relation:

DLM0 =

√
4π

2L+1
Y ∗LM . (75)

Case 1: we shall integrate over (θ′, φ′) and (θ′′, φ′′) and
average over the polarizations for γ2 and e

−. Only the po-
larization and the angular distribution of the first gamma
photon γ1 are measured. We obtain

W̃µ(θ, φ) =
1

4

± 12∑

α1

±1∑

κ

∫
Wµκα1(θ, φ; θ

′, φ′; θ′′, φ′′)dΩ′dΩ′′

=
9(2J+1)

2
√
π
ε0γ

00
0+

×

[
α0β

00
0+Y00(θ)+

1
√
5
α2β

20
0+Y20(θ)

]
, (76)

where the angle θ is the direction of p̄ measured from
the z axis, which is taken to be the direction of the mo-
mentum of χJ . This angle is the same as that of γ1
measured in the ψ′ rest frame with the z axis taken to
be the direction of the proton. The x and y axes are
arbitrary in our discussion. Note that in (76) W̃µ(θ, φ)
is independent of the polarization µ. In other words,
the single-particle angular distribution of γ1 is the same
whether the polarization of γ1 is measured or not. Sub-
stituting for the coefficients α, ε, γ and β given in (50)–
(54), we can express W̃µ(θ, φ) in terms of the helic-
ity amplitudes for the J = 0, J = 1 and J = 2 cases as
follows.

J = 0:

W̃µ(θ, φ) =
1

2
√
π

[
Y00(θ)−

1
√
5

(
2|B0|

2−|B1|
2
)
Y20(θ)

]
.

(77)
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J = 1:

W̃µ(θ, φ) =
1

2
√
π

[
Y00(θ)−

1
√
5

(
2|B0|

2−|B1|
2
)

×
(
|A0|

2−2|A1|
2
)
Y20(θ)

]
. (78)

J = 2:

W̃µ(θ, φ) =
1

2
√
π

[
Y00(θ)−

1
√
5

(
2|B0|

2−|B1|
2
)

×
(
|A0|

2−2|A1|
2+ |A2|

2
)
Y20(θ)

]
. (79)

Case 2: we shall integrate over (θ, φ) and (θ′′, φ′′) and
average over the polarizations for γ1 and e

−. Only the
polarization and the angular distribution of the second
gamma photon γ2 are measured. We get

W̃κ(θ
′, φ′) =

1

4

± 12∑

α1

±1∑

µ

∫
Wµκα1(θ, φ; θ

′, φ′; θ′′, φ′′)dΩdΩ′′

=
9(2J+1)

2
√
π
ε0α0

0,2→2J∑

L2

β0L20+ γ
0L2
0+

×

√
1

2L2+1
YL20(θ

′) , (80)

where θ′ is the angle between ψ′ and γ2 in the χJ
rest frame. Note also that in (80) W̃κ(θ

′, φ′) is indepen-
dent of the polarization of γ2. Therefore, the photon γ2
with positive helicity has the same single-particle angu-
lar distribution as the photon γ2 with negative helicity.
Using (50)–(54) we again write the results separately for
the J = 0, J = 1 and J = 2 cases in terms of the helicity
amplitudes.

J = 0:

W̃κ(θ
′, φ′) =

1

2
√
π
Y00(θ

′) , (81)

J = 1:

W̃κ(θ
′, φ′) =

1

2
√
π

[
Y00(θ

′)+
1

2
√
5

(
2|A0|

2−|A1|
2
)

×
(
2|E0|

2−|E1|
2
)
Y20(θ

′)

]
. (82)

J = 2:

W̃κ(θ
′, φ′) =

1

2
√
π

[
Y00(θ

′)+

√
5

14

(
2|A0|

2+ |A1|
2−2|A2|

2
)

×
(
2|E0|

2+ |E1|
2−2|E2|

2
)
Y20(θ

′)

+
1

42

(
6|A0|

2−4|A1|
2+ |A2|

2
)

×
(
6|E0|

2−4|E1|
2+ |E2|

2
)
Y40(θ

′)

]
. (83)

Case 3: we shall integrate over (θ, φ) and (θ′, φ′) and
average over the polarizations for γ1 and γ2. Only the po-
larization and the angular distribution of the electron are
measured. We have

W̃α1(θ
′′, φ′′)

=
1

4

±1∑

µ

±1∑

κ

∫
Wµκα1(θ, φ; θ

′, φ′; θ′′, φ′′)dΩdΩ′

=
9(2J+1)

2
√
π
α0β

00
0+

0,2∑

L1

εL1γ
L10
0+

√
1

2L1+1
YL10(θ

′′) ,

(84)

where θ′′ is the “Wigner-rotated” angle between the direc-
tions of the momenta of e− and χJ in the ψ rest frame.
Note that in (84) W̃α1(θ

′′, φ′′) is independent of the helicity
α1 of the electron. The following expressions are the results
for the J = 0, J = 1 and J = 2 cases, respectively, in terms
of the helicity amplitudes:

J = 0:

W̃α1(θ
′′, φ′′) =

1

2
√
π

[
Y00(θ

′′)+
1

2
√
5
Y20(θ

′′)

]
. (85)

J = 1:

W̃α1(θ
′′, φ′′) =

1

2
√
π

[
Y00(θ

′′)

+
1

2
√
5

(
|E0|

2−2|E1|
2
)
Y20(θ

′′)

]
. (86)

J = 2:

W̃α1(θ
′′, φ′′) =

1

2
√
π

[
Y00(θ

′′)

+
1

2
√
5

(
|E0|

2−2|E1|
2+ |E2|

2
)
Y20(θ

′′)

]
.

(87)

In calculating (85)–(87) we have neglected |C0|2 when com-
pared to |C1|2 for the reason mentioned earlier. Using (86)
and the normalization |E0|2+ |E1|2 = 1, we can easily ex-
press the relative magnitudes of the E helicity amplitudes
for J = 1 in terms of the angular distribution W̃α1(θ

′′, φ′′).
Therefore the measurement of the angular distribution of
the electron alone enables us to determine the relative
magnitudes of the E helicity amplitudes. Likewise, we can
then get the relative magnitudes of the A helicity ampli-
tudes for J = 1 by (82) together with the normalization
|A0|2+ |A1|2 = 1. Finally we can determine the relative
magnitudes of the B helicity amplitudes for J = 1 by mak-
ing use of (78) and the normalization |B0|2+ |B1|2 = 1.
In other words, we can obtain the relative magnitudes of
all the helicity amplitudes B, A and E for the J = 1 case
by measuring the one-particle angular distributions of the
electron and the two photons. For the J = 2 case, this is
not possible because there are more unknowns than the
equations. Using (77) we can also determine the relative
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magnitudes of the B helicity amplitudes for the J = 0 case.
This will give us a check on what we had in the J = 1 case
because the production amplitudes in the initial process
p̄p→ ψ′ should be independent of J .
After studying the single-particle angular distributions

for γ1, γ2 and e
− whose polarizations are also measured,

we can conclude that these angular distributions are the
same as the single-particle angular distributions with no
measurement of polarizations. Therefore the measurement
of the polarizations of the particles does not give us any
extra information. Nevertheless, we will find that the ob-
servation of the polarizations of the decay particles is useful
and gives us more information on the helicity amplitudes
when wemeasure the simultaneous angular distributions of
two particles. Since there is nothing more to be determined
from the J = 0 case, we shall only concentrate on the J = 1
and the J = 2 cases.
Case 4: we shall first integrate over the angles (θ, φ) and

then average over the polarizations of γ1. The combined
angular distribution of γ2 and e

− and the polarization of
only one of the two particles are measured. The explicit
expressions are given in the following.
J = 1 (only κ is measured):

˜̃
Wκ(θ

′, φ′; θ′′, φ′′)

=
1

4

± 12∑

α1

±1∑

µ

∫
Wµκα1(θ, φ; θ

′, φ′; θ′′, φ′′) sin θdθdφ

=
1

4π

[
Y00(θ

′′)Y00(θ
′)+

1

2
√
5

(
2|A0|

2−|A1|
2
)

×
(
2|E0|

2−|E1|
2
)
Y00(θ

′′)Y20(θ
′)

]

+

√
3

4π
ε2

{
−
1
√
10

(
|E0|

2−2|E1|
2
)
Y20(θ

′′)Y00(θ
′)

−
1

5
√
2

(
2|A0|

2−|A1|
2
)
Y20(θ

′′)Y20(θ
′)

−
3

5
√
2

(
2|A0|

2−|A1|
2
)
Re(E1E

∗
0 )

×Re[Y2κ(θ
′′, φ′′)Y2κ(θ

′, φ′)]

−
3

5
√
2

(
2|A0|

2−|A1|
2
)
Im(E1E

∗
0 )

× Im[Y2κ(θ
′′, φ′′)Y2κ(θ

′, φ′)]

}
. (88)

J = 1 (only α1 is measured):

˜̃
Wα1(θ

′, φ′; θ′′, φ′′)

=
1

4

±1∑

κ

±1∑

µ

∫
Wµκα1(θ, φ; θ

′, φ′; θ′′, φ′′) sin θdθdφ

=
1

4π

[
Y00(θ

′′)Y00(θ
′)+

1

2
√
5

(
2|A0|

2−|A1|
2
)

×
(
2|E0|

2−|E1|
2
)
Y00(θ

′′)Y20(θ
′)

]

+
1

4π
ε1

{
3
√
10

(
2|A0|

2−|A1|
2
)
Im(E1E

∗
0 )

× Im[Y11(θ
′′, φ′′)Y21(θ

′, φ′)]

}

+

√
3

4π
ε2

{
−
1
√
10

(
|E0|

2−2|E1|
2
)
Y20(θ

′′)Y00(θ
′)

−
1

5
√
2

(
2|A0|

2−|A1|
2
)
Y20(θ

′′)Y20(θ
′)

−
3

5
√
2

(
2|A0|

2−|A1|
2
)
Re(E1E

∗
0 )

×Re[Y21(θ
′′, φ′′)Y21(θ

′, φ′)]

}
. (89)

Inspection of (88) and (89) shows that we can determine
the relative magnitudes of the A and the E helicity am-
plitudes as well as the relative phase between E0 and E1
when we measure the combined angular distribution of γ2
and e− and the polarization of either one of the particles
for the J = 1 case. It should be noted that the measurement
of the polarization of one of the two particles is essential
for getting the sine of the relative phase between the two
independent E helicity amplitudes.
J = 2 (only κ is measured):

˜̃Wκ(θ
′, φ′; θ′′, φ′′)

=
1

4π

{
Y00(θ

′′)Y00(θ
′)+

√
5

14

(
2|A0|

2+ |A1|
2−2|A2|

2
)

×
(
2|E0|

2+ |E1|
2−2|E2|

2
)
Y00(θ

′′)Y20(θ
′)

+
1

42

(
6|A0|

2−4|A1|
2+ |A2|

2
)

×
(
6|E0|

2−4|E1|
2+ |E2|

2
)
Y00(θ

′′)Y40(θ
′)

}

+

√
3

4π
ε2

{
−
1
√
10

(
|E0|

2−2|E1|
2+ |E2|

2
)
Y20(θ

′′)Y00(θ
′)

−
1

7
√
2

(
2|A0|

2+ |A1|
2−2|A2|

2
)

×
(
|E0|

2−|E1|
2−|E2|

2
)
Y20(θ

′′)Y20(θ
′)

−

√
3

7
√
2

(
2|A0|

2+ |A1|
2−2|A2|

2
)

×
[
Re(E1E

∗
0 )−
√
6Re(E2E

∗
1 )
]

×Re[Y2κ(θ
′′, φ′′)Y2κ(θ

′, φ′)]

−

√
3

7
√
2

(
2|A0|

2+ |A1|
2−2|A2|

2
)

×
[
Im(E1E

∗
0 )−
√
6 Im(E2E

∗
1 )
]

× Im[Y2κ(θ
′′, φ′′)Y2κ(θ

′, φ′)]

+
2
√
3

7

(
2|A0|

2+ |A1|
2−2|A2|

2
)
Re(E2E

∗
0 )

×Re[Y2,2κ(θ
′′, φ′′)Y2,2κ(θ

′, φ′)]

+
2
√
3

7

(
2|A0|

2+ |A1|
2−2|A2|

2
)
Im(E2E

∗
0 )

× Im[Y2,2κ(θ
′′, φ′′)Y2,2κ(θ

′, φ′)]

−
1

42
√
10

(
6|A0|

2−4|A1|
2+ |A2|

2
)

×
(
6|E0|

2+8|E1|
2+ |E2|

2
)
Y20(θ

′′)Y40(θ
′)
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−
1

7
√
6

(
6|A0|

2−4|A1|
2+ |A2|

2
)

×
[√
6Re(E1E

∗
0 )+Re(E2E

∗
1 )
]

×Re[Y2κ(θ
′′, φ′′)Y4κ(θ

′, φ′)]

−
1

7
√
6

(
6|A0|

2−4|A1|
2+ |A2|

2
)

×
[√
6 Im(E1E

∗
0 )+ Im(E2E

∗
1 )
]

× Im[Y2κ(θ
′′, φ′′)Y4κ(θ

′, φ′)]

−
1

7

(
6|A0|

2−4|A1|
2+ |A2|

2
)
Re(E2E

∗
0 )

×Re[Y2,2κ(θ
′′, φ′′)Y4,2κ(θ

′, φ′)]

−
1

7

(
6|A0|

2−4|A1|
2+ |A2|

2
)
Im(E2E

∗
0 )

× Im[Y2,2κ(θ
′′, φ′′)Y4,2κ(θ

′, φ′)]

}
. (90)

J = 2 (only α1 is measured):

˜̃Wα1(θ
′, φ′; θ′′, φ′′)

=
1

4π

{
Y00(θ

′′)Y00(θ
′)+

√
5

14

(
2|A0|

2+ |A1|
2−2|A2|

2
)

×
(
2|E0|

2+ |E1|
2−2|E2|

2
)
Y00(θ

′′)Y20(θ
′)

+
1

42

(
6|A0|

2−4|A1|
2+ |A2|

2
)

×
(
6|E0|

2−4|E1|
2+ |E2|

2
)
Y00(θ

′′)Y40(θ
′)

}

+

√
3

4π
ε1

{ √
5

7
√
2

(
2|A0|

2+ |A1|
2−2|A2|

2
)

×
[
Im(E1E

∗
0 )+
√
6 Im(E2E

∗
1 )
]

× Im[Y11(θ
′′, φ′′)Y21(θ

′, φ′)]

+

√
5

21
√
2

(
6|A0|

2−4|A1|
2+ |A2|

2
)

×
[√
6 Im(E1E

∗
0 )− Im(E2E

∗
1 )
]

× Im[Y11(θ
′′, φ′′)Y41(θ

′, φ′)]

}

+

√
3

4π
ε2

{
−
1
√
10

(
|E0|

2−2|E1|
2+ |E2|

2
)
Y20(θ

′′)Y00(θ
′)

−
1

7
√
2

(
2|A0|

2+ |A1|
2−2|A2|

2
)

×
(
|E0|

2−|E1|
2−|E2|

2
)
Y20(θ

′′)Y20(θ
′)

−

√
3

7
√
2

(
2|A0|

2+ |A1|
2−2|A2|

2
)

×
[
Re(E1E

∗
0 )−
√
6Re(E2E

∗
1 )
]

×Re[Y21(θ
′′, φ′′)Y21(θ

′, φ′)]

+
2
√
3

7

(
2|A0|

2+ |A1|
2−2|A2|

2
)
Re(E2E

∗
0 )

×Re[Y22(θ
′′, φ′′)Y22(θ

′, φ′)]

−
1

42
√
10

(
6|A0|

2−4|A1|
2+ |A2|

2
)

×
(
6|E0|

2+8|E1|
2+ |E2|

2
)
Y20(θ

′′)Y40(θ
′)

−
1

7
√
6

(
6|A0|

2−4|A1|
2+ |A2|

2
)

×
[√
6Re(E1E

∗
0 )+Re(E2E

∗
1 )
]

×Re[Y21(θ
′′, φ′′)Y41(θ

′, φ′)]

−
1

7

(
6|A0|

2−4|A1|
2+ |A2|

2
)
Re(E2E

∗
0 )

×Re[Y22(θ
′′, φ′′)Y42(θ

′, φ′)]

}
. (91)

Using (90) or (91) we can then determine the relative mag-
nitudes of the A and the E helicity amplitudes as well as
the relative phases among the E helicity amplitudes for the
J = 2 case. As in the J = 1 case, the measurement of the
polarization of one of the two particles is essential for get-
ting the sines of the relative phases among the E helicity
amplitudes.
Case 5: We first integrate over (θ′, φ′) and then aver-

age over the polarizations of γ2. The polarizations and
combined angular distribution of γ1 and e

− are measured.
Since we find that we cannot get any useful information
from this polarized angular distribution for J = 1 and J =
2, we do not provide our results here.
Case 6: We will integrate over (θ′′, φ′′) and average over

the polarizations of the electron. The combined angular
distribution of the two photons and the polarization of ei-
ther one of them are measured. We obtain
J = 1 (only µ is measured):

˜̃
Wµ(θ, φ; θ

′, φ′)

=
1

4

± 12∑

α1

±1∑

κ

∫
Wµκα1(θ, φ; θ

′, φ′; θ′′, φ′′) sin θ′′dθ′′dφ′′

=
1

4π

[
Y00(θ

′)Y00(θ)+
1

2
√
5

(
2|A0|

2−|A1|
2
)

×
(
2|E0|

2−|E1|
2
)
Y20(θ

′)Y00(θ)

]

−
1

4
√
5π

(
2|B0|

2−|B1|
2
)

×

{(
|A0|

2−2|A1|
2
)
Y00(θ

′)Y20(θ)

+
1
√
5

(
2|E0|

2−|E1|
2
)
Y20(θ

′)Y20(θ)

+
3
√
5

(
2|E0|

2−|E1|
2
)
Re(A1A

∗
0)

×Re[Y2µ(θ
′, φ′)Y ∗2µ(θ, φ)]

−
3
√
5

(
2|E0|

2−|E1|
2
)
Im(A1A

∗
0)

× Im[Y2µ(θ
′, φ′)Y ∗2µ(θ, φ)]

}
. (92)

J = 1 (only κ is measured):

˜̃
Wκ(θ, φ; θ

′, φ′)

=
1

4

± 12∑

α1

±1∑

µ

∫
Wµκα1(θ, φ; θ

′, φ′; θ′′, φ′′) sin θ′′dθ′′dφ′′
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=
1

4π

[
Y00(θ

′)Y00(θ)+
1

2
√
5

(
2|A0|

2−|A1|
2
)

×
(
2|E0|

2−|E1|
2
)
Y20(θ

′)Y00(θ)

]

−
1

4
√
5π

(
2|B0|

2−|B1|
2
)

×

{(
|A0|

2−2|A1|
2
)
Y00(θ

′)Y20(θ)

+
1
√
5

(
2|E0|

2−|E1|
2
)
Y20(θ

′)Y20(θ)

−3(−1)
1
2 (1−κ)|E1|

2 Im(A1A
∗
0) Im[Y11(θ

′, φ′)Y ∗21(θ, φ)]

+
3
√
5

(
2|E0|

2−|E1|
2
)
Re(A1A

∗
0)

×Re[Y21(θ
′, φ′)Y ∗21(θ, φ)]

}
. (93)

J = 2 (only µ is measured):

˜̃
Wµ(θ, φ; θ

′, φ′)

=
1

4π

{
Y00(θ

′)Y00(θ)+

√
5

14

(
2|A0|

2+ |A1|
2−2|A2|

2
)

×
(
2|E0|

2+ |E1|
2−2|E2|

2
)
Y20(θ

′)Y00(θ)

+
1

42

(
6|A0|

2−4|A1|
2+ |A2|

2
)

×
(
6|E0|

2−4|E1|
2+ |E2|

2
)
Y40(θ

′)Y00(θ)

}

−
1

4
√
5π

(
2|B0|

2−|B1|
2
)

×

{(
|A0|

2−2|A1|
2+ |A2|

2
)
Y00(θ

′)Y20(θ)

+

√
5

7

(
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+
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−
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. (94)

J = 2 (only κ is measured):

˜̃Wκ(θ, φ; θ
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+

√
10

7

(
6|E0|

2−4|E1|
2+ |E2|

2
)
Re(A2A

∗
0)

×Re[Y42(θ
′, φ′)Y ∗22(θ, φ)]

}
. (95)

Since the relative magnitudes of the A and the E helic-
ity amplitudes have been obtained from the partially in-
tegrated angular distribution in case 4, an examination
of (92)–(95) shows that we can also determine the rela-
tive magnitudes of the B helicity amplitudes as well as the
relative phases among the A helicity amplitudes when the
simultaneous angular distribution of γ1 and γ2 is measured
with either one of their polarizations for both the J = 1 and
J = 2 cases.

4 Concluding remarks

We have derived three model-independent expressions
for the combined angular distribution of the final elec-
tron and the two gamma photons in the cascade pro-
cess, p̄p→ ψ′→ χJ +γ1→ ψ+γ2+γ1→ e++e−+γ2+γ1
(J = 0, 1, 2), when p̄ and p are unpolarized and the polar-
ization of any one of the three decay particles is measured.
Our expressions are based only on the general principles
of quantum mechanics and the symmetry of the problem.
We have also derived the partially integrated angular dis-
tribution functions, which give the angular distributions
of γ1, γ2 and e

− alone and of (γ1, γ2) and (γ2, e
−) with

the measurement of the polarization of one particle in each
case. Once these angular distributions are experimentally
measured, our expressions can be used to extract all the
independent helicity amplitudes in the processes, p̄p→ ψ′,
ψ′→ χJ +γ1, χJ → ψ+γ2 and ψ→ e+e− for all values of
J . In fact, the analysis of the angular correlations in the
final decay products will serve to verify the value of J for
the intermediate χ state in the cascade process. The exper-
imentally determined values of the helicity amplitudes can

then be compared with the predictions of various dynami-
cal models. The great advantage of measuring the angular
distributions with the polarization of one particle is that
one can get both the cosines and sines of the relative phases
of the helicity amplitudes in the radiative decay processes
ψ′→ χJ +γ1 and χJ → ψ+γ2. This is very important be-
cause the helicity amplitudes are in general complex. In
addition, one can also get the relative magnitudes of all the
helicity amplitudes in each of the sequential decay process.
Therefore, by measuring the combined angular distribu-
tion of γ1, γ2 and e

− with the polarization of any one of
the three particles, one can get complete information on
the helicity amplitudes in the two radiative decay pro-
cesses mentioned above. Alternatively, one can also get the
same information by measuring the two-particle angular
distribution of γ2 and e

− and that of γ1 and γ2 with the
polarization of either one of the two particles.
It is of great advantage that we express all the angu-

lar distribution functions in terms of the orthogonal func-
tions such as the Wigner DJ functions and the spheri-
cal harmonics. Because of this feature of our results, we

can get the coefficients of these functions, which are func-
tions of the angular-momentum helicity amplitudes, by
just doing a numerical integration of the measured angular
distributions.
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